N9¢g-920 2. 4
LY I S

o

Controlling Multiple Manipulators Using RIPS
Yulun Wang Steve Jordan Amante Mangaser Steve Butner

Center for Robotic Systems in Microelectronics
University of California, Santa Barbara

Abstract

A prototype of the RIPS architecture - Robotic Instruction Processing System - has been
developed at the Center for Robotic Systems in Microelectronics, University of California at Santa
Barbara. A two-arm robot control experiment is underway in order to characterize the architecture
as well as research multi-arm control. This experiment uses two manipulators to cooperatively
position an object. The location of the object is specified by the host computer's mouse.
Consequently, real-time kinematics and dynamics are necessary. The RIPS architecture is
specialized so that it can satisfy these real-time constraints.

This paper discusses the two-arm experimental set-up. A major part of this work is the
continued development of a good programming environment for RIPS. We are working with the
C++ language and have favorable results in the targetting of this language to the RIPS hardware.

1. Introduction

RIPS, for Robotic Instruction Processing System, is a specialized computer targetted to meet
the real-time computational requirements for advanced robot control [1-3]. Although the
architecture assumes no manipulator characteristic or control strategies, its unique structure can
extract most of the parallelism inherent to robot control problems.

A prototype system has been designed and built. This system is being used by researchers at
the Center for Robotic Systems in Microelectronics at the University of California, Santa Barbara,
to experiment with robot control algorithms which were previously too computationally intensive
for real-time evaluation.

This paper describes our current efforts in a two-arm cooperative manipulation experiment.
This experiment will enable us to analyze the performance of RIPS as well as study two-arm
control. Since RIPS is a custom system, a major part of this work has been the development of a
programming environment which can support robotic research. Section 2 gives a brief description
of the RIPS architecture. Section 3 describes the two-arm experiment. Section 4 discusses the
progr:il(mming environment which we are developing, and section § offers some concluding
remarks.

2. The RIPS Architecture

RIPS is a multiprocessor architecture where a tightly coupled cluster of processors is allocated
to each dynamically coupled system. Multiple clusters are used to control multiple manipulators.
The system level architecture is shown in Figure 1.

361

Within a cluster, a private bus controlled by a custom I/O (DMA) handler provides high-speed
interprocessor communication. Data transfers between processors of the same cluster require a 3
microsecond set-up time, and 400 nanoseconds per 32-bit word transfer. Therefore, multiple
transfers are possible within the servoing update cycle.

Communication between clusters is supported by a standard asynchronous bus (VME), which
operates at a slower speed. This bus is used for higher level, and hence slower, communication.
For example, this bus can be used to coordinate the motion of multiple mechanisms.

The RIPS architecture uses extensive parallel processing to increase the real-time execution
speed of robot control algorithms. Before parallel processing can be applied, however, it is
important to realize that parallelism can be exploited at many different levels. For example,
partitioning the target problem into multiple sub-problems, and simultaneously executing the sub-
problems is considered job level parallelism. Whereas, pipelining the instruction execution of a
processor is considered intra-instruction level parallelism. A detailed understanding of the target
problem is essential before parallel processing can be effectively applied.

In the RIPS system, each of the subsystems simultaneously executes a different part of the
robot control problem. The general schema is a convenient user interface at the host level, which
issues trajectory-level commands to the robotic processor(s). The robotic processor evaluates the
inverse kinematic and inverse dynamic equations for a particular manipulator, and uses its I/O
handler for interprocessor communication. The servo controllers run independently using
(optionally) a higher speed update cycle to servo about trajectory set points.

The robotic processor is a custom processor designed to exploit parallelism in robot kinematics
and dynamics. After examining kinematic and dynamic equations, we found that they can be
efficiently formulated using three-dimensional vector equations. In fact, any rigid body dynamics
problem can be expressed in three-dimensional vector notation. An intuitive reason for this
intrinsic structure is that these equations explain the motion of three-dimensional bodies in a three-
dimensional space. Consequently quantities like positions, velocities, accelerations, forces, and
moments are most conveniently described by 3-D vectors. A detailed explanation of the robotic
processor's operation can be found in [3].

A prototype RIPS system has been built and is currently being used for a two-arm
manipulation experiment. The current configuration consists of a SUN 3/140 host computer, one
robotic processor, one I/O handler, and one servo controller.

3. A Two-Arm Experiment

Advances in multi-arm cooperative manipulation will enhance the capabilitties of robots
tremendously. One of the major difficulties which prevents the development of such systems is
that the computational requirements quickly become overwhelming, even with moderately complex
manipulators performing seemingly simple tasks. We felt that RIPS can offer good experimental
data to this area of research.

Our experiment is designed both to provide insight into two-arm control as well as to test the
RIPS architecture. The two-arm set-up is shown in Figure 2. Each arm is a five-bar-link direct-
drive mechanism, which was designed and built at the CRSM [4]. Three direct-drive motors are
used to control each manipulator. Even though these manipulators can move only in a horizontal
plane, our control programs assume general 3-D capabilities. This is so that our results can be
extrapolated and applied to more complex mechanisms.

362

Our experiment demonstrates real-time two arm cooperation. The SUN host's mouse generates
a trajectory for an object which is held by both arms. Since the motion of the mouse is not
preplanned, the inverse kinematics must be computed in real time. If high speed manipulation is
required, real-time inverse dynamics is also needed.

3.1 Control Strategy

When two arms cooperatively manipulate an object, the entire system (i.e. the two arms and
the object) becomes dynamically coupled. If the inverse dynamics of this system is solved with a
single recursive algorithm, the computational burden becomes enormous. Nakamura [5] proposed
a dynamic force control method which allows parallel processing to be used. A block diagram of
this method controlling two cooperating manipulators is shown in Figure 3. At the beginning of
each update cycle, the simple dynamics of the object is calculated to determine the trajectory of each
manipulator. This information is fed to the servo blocks. The servoing of each arm, which
includes the inverse dynamics and kinematics, is computed in parallel, reducing the computation
time considerably.

Our prototype system has only one copy of each processor. As discussed earlier, ideally one
cluster of processors is assigned to each manipulator. However, due to limited resources we
perform the computations for both manipulators with one set of processors. The high
computational capacity of these subsystems allows us to maintain a good update rate (~1 ms)

anyways.

3.2 Sensor data acquisition and Filtering

The manipulators' actuators and encoders are accessed though a custom interface card. This
card has 6 optical encoder input channels and 6 analog output channels. Multiple cards can be used
simultaneously if additional joints are to be controlled.

Accurate position and velocity measurements are mandatory for good trajectory control. The
interface card uses standard optical encoder feedback to measure joint position. Joint velocity is
measured by using a high frequency clock to compute the time between successive rising edges
from one of the two optical encoder channels. Velocity is derived by the servo controller with a
simple inversion algorithm. Only one of the two channels is used since optical encoders do not
always maintain their two channels 90 degrees out of phase. The direction of rotation is also
incorporated into the velocity signal by noting the change in position. A 2 pole low-pass filter was
necessary to eliminate high-frequency noise.

Figure 4 shows an example of the resulting velocity signal before and after filtering. The
corresponding position is displayed for reference. This graph shows a manipulator joint's
response to an input step. Note that we underdamped the system to create a more demonstrative
picture.

4. Programming Environment

We have spent a good deal of time developing a programming environment for RIPS. A
software support will allow RIPS to be used more effectively in robot control research, such as our
two-arm experiment. Since our processing subsystems are custom designed, we have had to
develop our software starting from a very low level. Fortunately the host operating system is
UNIX, so all of the UNIX programming tools are available. These tools have assisted us
tremendously in our development efforts.

A UNIX device driver lets us communicate with the different processing subsystems. A
menu-driven monitor program assists the user in issuing commands. Figure 5 gives a snapshot of
its format. The left column contains the system level commands. Some of these commands have
sub-menus which are displayed in the right column when requested. Figure 5 shows the sub-
menu for the robotic processor in the right column. This menu is displayed when the user types
the command 6 (for rpmenu). Our eventual goal is to develop an interface which appears identical
to the UNIX shell. Our shell, however, will understand the additional hardware resources (i.e.
robotic processors, I/O handlers, and servo controllers) and know how to use them. With this, a
user can run a program which is automatically executed on the custom hardware.

Good program development support is essential for an experimental system. This begins from
the lowest-level translators. A TMS320C25 assembler donated from Texas Instruments was
ported from MS-DOS to UNIX so that we can write I/O handler and servo controller programs.
We had to write a custom assembler for the robotic processor because of its unique instruction set.
This assembler was designed so that the instruction set can be easily modifed. This has turned out
to be a very useful; we have already updated the robotic processor's instruction set twice.

4.1 High-Level Language Programming

High-level language support allows other users to easily write programs for the system. We
have already developed a number of large assembly language programs and are well aware of the
inconveniences of assembly language programming.

We are first targetting a high-level language to the robotic processor since it executes the most
difficult algorithms. The I/O handler and servo controller programs should remain fairly simple,
hence assembly language programming is not too cumbersome. The I/O handler only executes a
fairly simple polling program for interprocessor communication. The servo controller interfaces to
the manipulators, and calculates simple control laws. Eventually we will provide high-level
support for these subsystems.

We have decided to support C++ as the high-level language [6]. The main advantages of C++
are that it is object-oriented, it supports user-defined types, and it permits function overloading.
Instead of starting from scratch, we are retargetting the GNU compiler from the Free Software
Foundation [7]. This compiler is distributed freely in source code form, and has already developed
a reputation for its high quality code. The GNU optimizing C and C++ compilers share the same
retargettable back end, but have different front ends.

The robotic processor has an original architecture which creates some original compiler
problems. For example, the same register file is used to store both vector and scalar operands.
Therefore, the compiler must be taught the relationship between vector and scalar registers.

We have already successfully retargetted the GNU C compiler to the robotic processor. The
major effort involved writing a machine description which explains the processor's architecture to
the compiler. This compiler allows us to write C programs which execute on the robotic
processor. However, it cannot exploit the processor's vector capabilities. This limitation is partly
due to the C language itself. The advantages of C++ should be helpful in remedying this problem.
C++ supports the concept of user-defined types, which is explained in the next section.

4.2 C++, the Robotic Processor, and Robot Control

The robotic processor is optimized for operating on 3-dimensional vectors. Since C++
supports user defined types we can exploit this characteristic by defining a new type, VEC3.
VEC3 stands for 3-dimensional vector. This new type enables the compiler to recognize the three-
fold parallelism inherent in the program, and exploit the underlying hardware. This is best
explained with an example.

Computing the Jacobian matrix

The Jacobian matrix relates joint velocities to Cartesian velocities, and is used throughout
various robot control techniques. Orin and Schrader developed a very efficient algorithm for
computing the Jacobian [8]. The equations which implement the algorithm are:

N+1UN+1 =1
N+1Ui_1 = N+1Ui i'IUTi i= (N+l), o021

0
N+1%Y;) = N+1y, 4 0 '

1 i=1,2,...N revolute joint
N+ ;=0 i=1,2,...N prismatic joint

N+ll'N+1 =0
N-O'Iri_1 = N+ll'-i - N+1Ui i p*i

N+18 . = N+1%. % (- N+1p.) i=1,2,...N revolute joint
i i i J

0

N+, =N+HIU; (1) i=1,2,...N prismatic joint

where the Us are 3-by-3 rotational matrices, the Is are 3-by-3 identity matrices, and the Bs, ¥s, I's

and p*s are 3-dimensional vectors. B ; and ; form the ith column of the J. acobian. This algorithm
starts at the manipulator's end-effector and recursively propagates velocities back towards the base.
The resulting Jacobian transforms joint velocities to Cartesian velocities with reference to the
manipulator's end effector. Since the Jacobian matrix transforms joint velocities to linear and
angular velocities, the algorithm is most efficiently expressed using only 3-D vectors and 3-by-3
rotational matrices.

As mentioned earlier, C++ lets the user define new data types - or classes - as well as the
operator functions when operating on data of the new types - or overloading. The VEC3 data type
is instrumental in programming this algorithm so that the robotic processor can exploit the
algorithm's inherent parallelism. The three components of a VEC3 object are i, j, and k. These
components can be accessed individually as well as collectively. We overloaded the arithmetic
operators so that the C++ compiler understands how to manipulate VEC3 objects. Addition,
subtraction, multiplication, and division are performed component-wise. In other words, for

365

addition, the i components are added together, the j components are added together, and the k
components are added together. We also overloaded useful combinations of VEC3 objects and
scalars. For example, the addition of a VEC3 object and a scalar is defined such that the scalar is
added to each component of the vector. Some combinations are meaningless. For example,
dividing a scalar by a vector.

Another class called ROT was created to support rotational transformations. A ROT is a 3-by-
3 matrix made of three 3-dimensional column vectors, each VEC3s. Each column can be
individually accessed as vectors n (normal), o (orientation), and a (approach), which is consistent
with standard homogeneous transformation terminology [9]. Furthermore, each component of a
vector can be accessed individually. For example, if a ROT ttt was declared, ttt.n refers to column
n of the matrix, and ttt.n.i refers to the ith component of the nth column. This gives the programmer
a clean way of accessing the different pieces of a matrix.

Having defined these two classes we can write a program which implements the Jacobian
algorithm mentioned above. This program generates the Jacobian matrix for a PUMA 560.
However, it is easy to modify it for any robot manipulator by changing the value of the constant
REVOLUTE.

#include <stream.h>
#include <math.h>
#include "3D_classes.h"

const REVOLUTE =0x7e //bit code for revolute/prismatic combination for
// the PUMA manipulator

main()

{

int i;

float theta[7];

/* Declaration of 6-by-6 Jacobian Matrix */

VEC3 gamma[7]; // gamma[0] is not used
VEC3 beta[7]; // beta[0] is not used

for(i = 1,1 < 7; i++){
gammali] = VEC3(0.0, 0.0, 0.0); //clear Jacobian
} beta[i] = VEC3(0.0, 0.0, 0.0);

ROT U[8]; // initialize rotational matrices with the

U[1] =ROT(PI/2, -PL)2); // Denivit-Hartenberg joint angle and twist angle
U[2] = ROT(PI/8, 0.0);

U[3] = ROT(P1/7, PI/2);

U[4] = ROT(PY/10, PI/2);

U[5] = ROT(PI/30, PI/2);

U[6] = ROT(PI/20, 0.0);

U[7] = ROT(0.0, 0.0);

VEC3 p[7]; //initialize translation vectors

p[1] = VEC3(0.0, 0.0, 0.0); // these vectors point from origin of one
p[2] = VEC3(431.8, 0.0, 149.9); // coordinate frame to the next

p[3] = VEC3(-20.32, 0.0, 0.0);

pl4] = VEC3(0.0, -433.07, 0.0);
p[5] = VEC3(0.0, 0.0, 0.0);
pl6] = VEC3(0.0, 0.0, 56.25);
p[7] = VEC3(0.0, 0.0, 0.0);

ROT N_U8]; // initialize base to joint rotational matrices
N_U[7] = ROT(0.0, 0.0); // initialize end-effector rotational matrix to I
VEC3 1[8]; // initialize base to joint vector

r[7] = VEC3(0.0, 0.0, 0.0); // clear vectors

r{6] = VEC3(0.0, 0.0, 0.0);

for (i = 6;i>=0; i--){

theta[i] = RD_THETA; // read in new theta value
Uli].load_theta(thetal[i]); // input new theta into U matrix

N_U[i] = N_U[i+1] * U[i+1].T();
r[i] = r[i+1] - N_U[i+1] * p[i+1];
)

for (i = 6; i > 0; i--){

if((0x1 << i) & REVOLUTE) {
gamma[i] = N_U[i-1].3; // gammali] <- vector a in N_U[i-1}
beta[i] = cross(gammali], -r(i-1]); // cross product

}

else {
gamma(i] = VEC3(0.0, 0.0, 0.0);
beta[i] = N_U[i-1].a;

cout << beta[i] << gammal[i] << "\n"; // output ith column of the Jacobian

}
}

This program demonstrates how easily the Jacobian algorithm is written in C++ with the
addition of the VEC3 and ROT classes. Furthermore, because the compiler is made aware of these
new data types, the final code can exploit the vector nature of the robotic processor.

The arithmetic operators are overloaded to operate on the new data types. Consequently,
arithmetic operators can be used instead of function calls, which simplifies the appearance and
readability of the program. A couple of specialized functions are also defined. For example,
U[i+1].T refers to the transpose of U[i+1], and Ul[i].load _theta(theta[i]) inserts the new theta
value into the appropriate places of the rotational matrix.

C++ supports a mechanism called constructors [6], which are used to initialize user defined
classes. VEC3 objects are initialized with the values of the three vector components. ROT data
types are initialized with the Denivit-Hartenberg joint and twist angles [9]. Code in 3D_classes.h
describes how to generate the 3-by-3 matrix from this information.

367

5. Conclusion

We are using the RIPS prototype as a test bed for experimenting with two-arm cooperative
control. This experiment provides insight to two-arm control research, as well as tests the RIPS
architecture. Much of our work has been the development of a programming environment which
gives us the tools to perform our experiments.

We have written a monitor program, with a menu interface, for communicating with our
custom hardware. A custom interface card which connnects the RIPS system to the two
manipulators has been built. This card generates both high-accuracy position and velocity
feedback from optical encoder signals.

High-level language support becomes necessary to implement complex control algorithms. We
are currently targetting the GNU C++ optimizing compiler to the robotic processor architecture.
Our approach will enable us to write programs in high-level constructs and still generate efficient
robotic processor vector code.

Acknowledgements

We gratefully acknowledge the contributions of research assistant Vikram Koka for his
assistance in software development. We would also like to thank Texas Instruments, Advanced
Micro Devices, and Cypress Semiconductor for their generous donations of key components, and
the Free Software Foundation for providing the basis for our retargetable optimizing compilers.
This work has been funded by the National Science Foundation under grant number 0842415 and
by the Allen-Bradley Division of Rockwell International with matching support of the State of
California MICRO program.

References

(1] Butner, S., Wang Y., Mangasar, A., Jordan, S., "Design and Simulation of a Robotic Instruction Processing
System,” Proc. of the IEEE Conf. on Robotics and Automation, Phil., PA., April 1988.

[21 Wang, Yulun and Steven E. Butner, "RIPS: A Platform for Experimental Real-Time Sensory-based Robot
Control” to appear in the Trans. on Sys, Man, and Cybernetics, 1989.

(31 Wang, Yulun, RIPS: A Computer Architecture for Advanced Robot Control, Ph.D. dissertation, University
of California, Santa Barbara, May 1988.

[4] Asada, H,, and T. Kanada,” Design of Direct-Drive Mechanical Arms," ASME Journal of Vibration,
Acoustics, Stress, and Reliability in Design, Vol 105, No 3., pp 312-316, 1983.

(5] Nakamura, Y., Nagai, K. and Y. Tsuneo, "Dynamic Stability in Coordination of Multiple Robotic
Mechanisms," Int. Journal on Robotics Research, vol 8., No 2., 1989,

[6] Stroustrup, Bjarne,The C++ Programming Language, Addison-Wesley, Reading, Mass., 1986.
{71 Stallman, Richard, Internals of GNU CC, Free Software Foundation Inc., 1988,

{81 Orin, David E. and William W. Schrader, "Efficient Computation of the Jacobian for Robot Manipulators,”
Int. Journal of Robotics Research, vol. 3, No. 4, Winter 1984.

(91 Paul, R.P., Robot Manipulators, MIT Press, Cambridge, Mass., 1982.

Host
(SUN 3] *®

SB [4¥

SB 4P

o

Figure 1. RIPS System Configuration

Bus B2
Diagnostic
Bus IF
10 S
Handle

Bus
10 4..‘
Handle; ‘E M

actuator/

encoder
RP I e 0 0 combo

RP - Robotic Processor
SC - Servo Controller

SB - Sensor Processing

- Interface Card
- Sensor

Board

Figure 2. Two-Arm Set up

joint torques

joint angles and velocities
desired motion for robot 1 |
desired forces for robot 1 b Resolved Accel
Desired . . . Control with
Task desired object acceleration __pl Force feedback

/

>

Task
Planner

l

L ——»

>

desired resultant force applied to obj

Trajectory
Planner

Robot 1

4

end-etfector force

joint position and velocity

joint torques

|

desired forces for robot 2 T

] Resolved Accel /

ect Control with
Force feedback

L >

Robot 2

desired motion for robot 2

end-effector force

joint position and velocity

Figure 3. Dynamic Force Control of
Two Arms

369

Counts

1560 ————T——+—T— 111:71 I}T‘!j

L position |

1000 — —
500 — —
filtered velocity J

o ——
unfiltered velocity)

- 500 I Y S | l S N | I S S S l S S . J

0 100 200 300 400
milliseconds

Figure 4. Measured Position and Velocity

rips:amante

R X & & RIPS Command Manu X % % &
RIPS: 1 RPO: 1 IOH: 1 SC: lo-=-- Tua Oct 18 18:46:49 1988

10: rpecurd: Read RPCU-Host
11: rpcurd3: Read RPCU-Host vectors
12: rpecuwr: Write RPCU-Host

: quit: Tarminata session
: ripsresat: Resat RIPS
: ripstartup: Taest/start RIPS (NA)

. ripstest: Run Diagnostics (NA) 13: rpcubrd: Read RPCU-Bushb

: ripsrun: Start RIPS : Write RPCU-Pushb

: ripshalt: Halt RIPS 15: pmdown: Download %.1st to RPPM
: rpmanu: Issue RP commands 16: rppmdump: Dump RP program memory
: scmanu: Issua SC commands 17: rpdmdown: Download data to RPDM
: iohmenu: Issue IOH commands 18: rpdmdump: Dump RP data mamory

: tastmenu: RIPS tasts 19: rpcrrxd: Raad RPCR

20: rpdmck: Check RPDM
21: rppmck: Check RPPM

I

Pnter command followad by <RETURN>: 19
SWITCH = 0 RUN/PROG* = 1 MHCROR= 0 HCRIR* = 0 HCUIR = 1 HCUOR = 0

DATA = Offff
X

Figure 5. Menu-Driven Monitor

370

